Abstract

Holant problem is a general framework to study the computational complexity of counting problems. We prove a complexity dichotomy theorem for Holant problems over the Boolean domain with non-negative weights. It is the first complete Holant dichotomy where constraint functions are not necessarily symmetric. Holant problems are indeed read-twice #CSPs. Intuitively, some #CSPs that are #P-hard become tractable when restricted to read-twice instances. To capture them, we introduce the Block-rank-one condition. It turns out that the condition leads to a clear separation. If a function set F satisfies the condition, then F is of affine type or product type. Otherwise (a) Holant(F) is #P-hard; or (b) every function in F is a tensor product of functions of arity at most 2; or (c) F is transformable to a product type by some real orthogonal matrix. Holographic transformations play an important role in both the hardness proof and the characterization of tractability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call