Abstract

We prove a complexity dichotomy theorem for Holant problems over an arbitrary set of complex-valued symmetric constraint functions F on Boolean variables. This extends and unifies all previous dichotomies for Holant problems on symmetric constraint functions (taking values without a finite modulus). We define and characterize all symmetric vanishing signatures. They turned out to be essential to the complete classification of Holant problems. The dichotomy theorem has an explicit tractability criterion expressible in terms of holographic transformations. A Holant problem defined by a set of constraint functions F is solvable in polynomial time if it satisfies this tractability criterion, and is #P-hard otherwise. The tractability criterion can be intuitively stated as follows: A set F is tractable if (1) every function in F has arity at most two, or (2) F is transformable to an affine type, or (3) F is transformable to a product type, or (4) F is vanishing, combined with the right type of binary functions, or (5) F belongs to a special category of vanishing type Fibonacci gates. The proof of this theorem utilizes many previous dichotomy theorems on Holant problems and Boolean #CSP. Holographic transformations play an indispensable role as both a proof technique and in the statement of the tractability criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.