Abstract

We show for a broad class of counting problems, correlation decay (strong spatial mixing) implies FPTAS on planar graphs. The framework for the counting problems considered by us is the Holant problems with arbitrary constant-size domain and symmetric constraint functions. We define a notion of regularity on the constraint functions, which covers a wide range of natural and important counting problems, including all multi-state spin systems, counting graph homomorphisms, counting weighted matchings or perfect matchings, and all counting CSPs and Holant problems with symmetric constraint functions of constant arity.The core of our algorithm is a fixed-parameter tractable algorithm which computes the exact values of the Holant problems with regular constraint functions on graphs of bounded treewidth. By utilizing the locally tree-like property of apex-minor-free families of graphs, the parameterized exact algorithm implies an FPTAS for the Holant problem on these graph families whenever the Gibbs measure defined by the problem exhibits strong spatial mixing. We further extend the recursive coupling technique to establish the strong spatial mixing on Holant problems. As consequences, we have new deterministic approximation algorithms on planar graphs for several counting problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call