Abstract

AbstractData from the Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited magnetic local time extent of these features can be explained by energy‐dependent drift of particles injected on the nightside 24 h earlier. Particle tracing simulations show that the energetic O+ can originate in the magnetotail, not in the ionosphere. Enhanced wave activity is colocated with the heavy ion‐rich plasma, and we further conclude that the waves were not a source of free energy for accelerating ionospheric plasma but rather the consequence of the arrival of substorm‐injected plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call