Abstract

Random genetic drift, natural selection and restricted gene dispersal are basic factors of the spatial genetic structure (SGS) in plant populations. Clonal reproduction has a profound effect on population dynamics and genetic structure and thus emerges as a potential factor in contributing to and modelling SGS. In order to assess the impact of clonality on SGS we studied clonal structure and SGS in the population of Populus alba. Six hundred and seventy-two individuals were mapped and genotyped with 16 nuclear microsatellite markers. To answer the more general question regarding the relationship between SGS and clonality we used Sp statistics, which allows for comparisons of the extent of SGS among different studies, and the comparison of published data on SGS in clonal and non-clonal tree species. Sp statistic was extracted for 14 clonal and 27 non-clonal species belonging to 7 and 18 botanical families, respectively. Results of genetic investigations conducted in the population of P. alba showed over-domination of clonal reproduction, which resulted in very low clonal diversity (R = 0.12). Significant SGS was found at both ramet (Sp = 0.095) and genet level (Sp = 0.05) and clonal reproduction was indicated as an important but not sole driving factor of SGS. Within-population structure, probably due to family structure also contributed to high SGS. High mean dominance index (D = 0.82) indicated low intermingling among genets. Literature survey revealed that clonal tree species significantly differ from non-clonal species with respect to SGS, having 2.8-fold higher SGS. This led us to conclude that clonality is a life-history trait that can have deep impact on processes acting in populations of clonal tree species leading to significant SGS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call