Abstract
Recently, a multidisciplinary approach has provided new insights into the mechanisms of category learning. In this article, results from theoretical modeling, experimental psychology, clinical neuropsychology, functional neuroimaging, and single-cell studies are reviewed. Although the results are not conclusive, some general principles have emerged. Areas localized in the sensory neocortex are responsible for the perceptual representation of category exemplars, whereas lateral and anterior prefrontal structures are necessary for the encoding of category boundaries and abstract rules. The prefrontal cortex may influence categorical representation in the sensory neocortex via top-down control. The neostriatum is important in stimulus–response mapping, and the orbitofrontal cortex/ventral striatum are related to stimulus–reward associations accompanying category learning. Many category learning tasks can be performed implicitly. In conclusion, category learning paradigms provide a unique opportunity to investigate cognitive processes such as perception, memory, and attention in a systematic and interactive manner. Category learning tasks are suitable for mapping damaged brain systems in clinical populations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have