Abstract

Background and aimsBladder cancer (BCa) is a highly aggressive malignancy of the urinary system. Timely detection is imperative for enhancing BCa patient prognosis. Materials and methodsThis study introduces a novel approach for detecting long non-coding RNA (lncRNA) Mitochondrial RNA Processing Endoribonuclease (RMRP) in urine exosomes from BCa patients using the reverse transcription recombinase-aided amplification (RT-RAA) and clustered regularly interspaced short palindromic repeats and associated Cas12a proteins (CRISPR/Cas12a) technique. Various statistical methods were used to evaluate its diagnostic value for BCa. ResultsThe specificity of urine exosomal RMRP detection for BCa diagnosis was enhanced by using RT-RAA combined with CRISPR/Cas12a. The testing process duration was reduced to 30 min, which supports rapid detection. Moreover, this approach allows the identification of target signals in real-time using blue light, facilitating immediate detection. In clinical sample analysis, this methodology exhibited a high level of diagnostic efficacy. This was evidenced by larger area under the curve values with receiver operating characteristic curve analysis compared with using traditional RT-qPCR methods, indicating superior diagnostic accuracy and sensitivity. Furthermore, the combined analysis of RMRP expression in urine exosomes detected by RT-RAA-CRISPR/Cas12a and NMP-22 expression may further enhance diagnostic accuracy. ConclusionsThe RT-RAA-CRISPR/Cas12a technology is a swift, sensitive, and uncomplicated method for nucleic acid detection. Because of its convenient and non-invasive sampling approach, user-friendly operation, and reproducibility, this technology is very promising for automated detection and holds favorable application possibilities within clinical environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call