Abstract
Chlamydia trachomatis, a leading cause of bacterial sexually transmitted infections, creates a specialized intracellular replicative niche by translocation and insertion of a diverse array of effectors (Incs [inclusion membrane proteins]) into the inclusion membrane. Here, we characterize IncE, a multifunctional Inc that encodes two non-overlapping short linear motifs (SLiMs) within its short cytosolic C terminus. The proximal SLiM, by mimicking just a small portion of an R-N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) motif, binds and recruits syntaxin (STX)7- and STX12-containing vesicles to the inclusion. The distal SLiM mimics the sorting nexin (SNX)5 and SNX6 cargo binding site to recruit SNX6-containing vesicles to the inclusion. By simultaneously binding two distinct vesicle classes, IncE brings these vesicles in close apposition with each other at the inclusion to facilitate C.trachomatis intracellular development. Our work suggests that Incs may have evolved SLiMs to enable rapid evolution in a limited protein space to disrupt host cell processes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have