Abstract

Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a membrane-bound vacuole termed the inclusion. Early in the infection cycle, the pathogen extensively modifies the inclusion membrane through incorporation of numerous type III secreted effector proteins, called inclusion membrane proteins (Incs). These proteins are characterized by a bilobed hydrophobic domain of 40 amino acids. The presence of this domain has been used to predict up to 59 putative Incs for C. trachomatis; however, localization to the inclusion membrane with specific antibodies has been demonstrated for only about half of them. Here, we employed recently developed genetic tools to verify the localization of predicted Incs that had not been previously localized to the inclusion membrane. Expression of epitope-tagged putative Incs identified 10 that were previously unverified as inclusion membrane localized and thus authentic Incs. One novel Inc and 3 previously described Incs were localized to inclusion membrane microdomains, as evidenced by colocalization with phosphorylated Src (p-Src). Several predicted Incs did not localize to the inclusion membrane but instead remained associated with the bacteria. Using Yersinia as a surrogate host, we demonstrated that many of these are not secreted via type III secretion, further suggesting they may not be true Incs. Collectively, our results highlight the utility of genetic tools for demonstrating secretion from chlamydia. Further mechanistic studies aimed at elucidating effector function will advance our understanding of how the pathogen maintains its unique intracellular niche and mediates interactions with the host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.