Abstract

AbstractTime of flight secondary ion mass spectrometry (ToF‐SIMS) and X‐ray photoelectron spectroscopy (XPS) have been employed to study the interfacial interaction between polymeric methylene diphenyl diisocyanate (PMDI) and aluminum produced by the deposition of a thin PMDI layer on the aluminum, in order to improve adhesion and/or abhesion performance.When the PMDI concentration increases, the intensity ratio fragments indicative of the reaction product with water (m/z = 106 u: C7H8N+) to that of isocyanate group (m/z = 132 u: C8H6NO+) decreases. A very thin MDI layer on oxidized aluminum samples exhibits lower 106/132 ratio than degreased samples as a result of less hydroxide/hydroxyl species on the surface. This suggests that water reactions occur both at the surface of PMDI and at the PMDI/aluminum interface. The variation of the PMDI chemistry has also been studied by exposing PMDI treated samples to the air for various periods of time (a few hours to 14 days), in order to assess the reaction of the PMDI surface and PMDI/aluminum interface. At the interface, the yield of reaction with water is limited because of the finite amount of hydroxyl groups on the aluminum surface, and the water reaction is completed in a short period of time. However, the PMDI surface continues to react with water from the atmospheric. This methodology was also used to establish the presence of specific interactions at the PMDI/aluminum interface, and a fragment indicative of covalent bond formation between PMDI and aluminum (AlCHNO3−) is observed at the interface. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call