Abstract

Abstract The line for the pulsed beam of the 3 MeV Tandetron accelerator at LABEC (Florence) has been upgraded for ion implantation experiments aiming at the fabrication of single-photon emitters in a solid-state matrix. A system based on Al attenuators has been calibrated in order to extend the energy range of the implanted ions from MeV down to the tens of keV. A new motorized XY stage has been installed in the implantation chamber for achieving ultra-fine control on the position of each implanted ion, allowing to reach the scale imposed by lateral straggling. A set-up for the activation of the implanted ions has been developed, based on an annealing furnace operating under controlled high-vacuum conditions. The first experiments have been performed with silicon ions implanted in diamond and the luminescent signal of the silicon-vacancy (SiV) center, peaked at 738 nm, has been observed for a wide range of implantation fluences (108 ÷ 1015 cm−2) and implantation depths (from a few nm to 2.4 µm). Studies on the efficiency of the annealing process have been performed and the activation yield has been measured to range from 1% to 3%. The implantation and annealing facility has thus been tuned for the production of SiV centers in diamond, but is in principle suitable for other ion species and solid-state matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call