Abstract

Abstract A census of 19 coupled and 12 uncoupled model runs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) shows that all models have the ability to simulate the location and height of the Caribbean low-level jet (CLLJ); however, the observed semiannual cycle of the CLLJ magnitude was a challenge for the models to reproduce. In particular, model means failed to capture the strong July CLLJ peak as a result of the lack of westward and southward expansion of the North Atlantic subtropical high (NASH) between May and July. The NASH was also found to be too strong, particularly during the first 6 months of the year in the coupled model runs, which led to increased meridional sea level pressure gradients across the southern Caribbean and, hence, an overly strong CLLJ. The ability of the models to simulate the correlation between the CLLJ and regional precipitation varied based on season and region. During summer months, the negative correlation between the CLLJ and Caribbean precipitation anomalies was reproduced in the majority of models, with uncoupled models outperforming coupled models. The positive correlation between the CLLJ and the central U.S. precipitation during February was more challenging for the models, with the uncoupled models failing to reproduce a significant relationship. This may be a result of overactive convective parameterizations raining out too much moisture in the Caribbean meaning less is available for transport northward, or due to incorrect moisture fluxes over the Gulf of Mexico. The representation of the CLLJ in general circulation models has important consequences for accurate predictions and projections of future climate in the Caribbean and surrounding regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.