Abstract

Abstract The Atlantic warm pool (AWP) is a large body of warm water that comprises the Gulf of Mexico, the Caribbean Sea, and the western tropical North Atlantic. Located to its northeastern side is the North Atlantic subtropical high (NASH), which produces the tropical easterly trade winds. The easterly trade winds carry moisture from the tropical North Atlantic into the Caribbean Sea, where the flow intensifies, forming the Caribbean low-level jet (CLLJ). The CLLJ then splits into two branches: one turning northward and connecting with the Great Plains low-level jet (GPLLJ), and the other continuing westward across Central America into the eastern North Pacific. The easterly CLLJ and its westward moisture transport are maximized in the summer and winter, whereas they are minimized in the fall and spring. This semiannual feature results from the semiannual variation of sea level pressure in the Caribbean region owing to the westward extension and eastward retreat of the NASH. The NCAR Community Atmospheric Model and observational data are used to investigate the impact of the climatological annual mean AWP on the summer climate of the Western Hemisphere. Two groups of the model ensemble runs with and without the AWP are performed and compared. The model results show that the effect of the AWP is to weaken the summertime NASH, especially at its southwestern edge. The AWP also strengthens the summertime continental low over the North American monsoon region. In response to these pressure changes, the CLLJ and its moisture transport are weakened, but its semiannual feature does not disappear. The weakening of the easterly CLLJ increases (decreases) moisture convergence to its upstream (downstream) and thus enhances (suppresses) rainfall in the Caribbean Sea (in the far eastern Pacific west of Central America). Model runs show that the AWP’s effect is to always weaken the southerly GPLLJ. However, the AWP strengthens the GPLLJ’s northward moisture transport in the summer because the AWP-induced increase of specific humidity overcomes the weakening of southerly wind, and vice versa in the fall. Finally, the AWP reduces the tropospheric vertical wind shear in the main development region that favors hurricane formation and development during August–October.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call