Abstract

Abstract The easterly Caribbean low-level jet (CLLJ) is a prominent climate feature over the Intra-America Seas, and it is associated with much of the water vapor transport from the tropical Atlantic into the Caribbean Basin. In this study, the North American Regional Reanalysis (NARR) is analyzed to improve the understanding of the dynamics of the CLLJ and its relationship to regional rainfall variations. Horizontal momentum balances are examined to understand how jet variations on both diurnal and seasonal time scales are controlled. The jet is geostrophic to the first order. Its previously documented semidiurnal cycle (with minima at about 0400 and 1600 LT) is caused by semidiurnal cycling of the meridional geopotential height gradient in association with changes in the westward extension of the North Atlantic subtropical high (NASH). A diurnal cycle is superimposed, associated with a meridional land–sea breeze (solenoidal circulation) onto the north coast of South America, so that the weakest jet velocities occur at 1600 LT. The CLLJ is present throughout the year, and it is known to vary in strength semiannually. Peak magnitudes in July are related to the seasonal cycle of the NASH, and a second maximum in February is caused by heating over northern South America. From May through September, zonal geopotential gradients associated with summer heating over Central America and Mexico induce meridional flow. The CLLJ splits into two branches, including a southerly branch that connects with the Great Plains low-level jet (GPLLJ) bringing moisture into the central United States. During the rest of the year, the flow remains essentially zonal across the Caribbean Basin and into the Pacific. A strong (weak) CLLJ is associated with reduced (enhanced) rainfall over the Caribbean Sea throughout the year in the NARR. The relationship with precipitation over land depends on the season. Despite the fact that the southerly branch of the CLLJ feeds into the meridional GPLLJ in May through September, variations in the CLLJ strength during these months do not impact U.S. precipitation, because the CLLJ strength is varying in response to regional-scale forcing and not to changes in the large-scale circulation. During the cool season, there are statistically significant correlations between the CLLJ index and rainfall over the United States. When the CLLJ is strong, there is anomalous northward moisture transport across the Gulf of Mexico into the central United States and pronounced rainfall increases over Louisiana and Texas. A weak jet is associated with anomalous westerly flow across the southern Caribbean region and significantly reduced rainfall over the south-central United States. No connection between the intensity of the CLLJ and drought over the central United States is found. There are only three drought summers in the NARR period (1980, 1988, and 2006), and the CLLJ was extremely weak in 1988 but not in 1980 or 2006.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call