Abstract

Vectorial Boolean functions and codes are closely related and interconnected. On the one hand, various requirements of binary linear codes are needed for their theoretical interests but, more importantly, for their practical applications (such as few-weight codes or minimal codes for secret sharing, locally recoverable codes for storage, etc.). On the other hand, various criteria and tables have been introduced to analyse the security of S-boxes that are related to vectorial Boolean functions, such as the Differential Distribution Table (DDT), the Boomerang Connectivity Table (BCT), and the Differential-Linear Connectivity Table (DLCT). In previous years, two new tables have been proposed for which the literature was pretty abundant: the c-DDT to extend the DDT and the c-BCT to extend the BCT. In the same vein, we propose extended concepts to study further the security of vectorial Boolean functions, especially the c-Walsh transform, the c-autocorrelation, and the c-differential-linear uniformity and its accompanying table, the c-Differential-Linear Connectivity Table (c-DLCT). We study the properties of these novel functions at their optimal level concerning these concepts and describe the c-DLCT of the crucial inverse vectorial (Boolean) function case. Finally, we draw new ideas for future research toward linear code designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.