Abstract

In developing a unified data base for support of engineering systems design there are several important factors to consider, such as efficiency of model description, ease of modifying models, and characteristics of assembling device models into systems. The multipart model and its associated bond graph representation can serve very effectively as a unified data base, especially when devices and systems involve several energy domains simultaneously (e.g., electromechanical or hydromechanical transduction). In addition to providing a succinct, flexible data base for linear and nonlinear, static and dynamic models, bond graphs can be processed causally to reveal important information about alternative input-output choices and device-level coupling factors when submodels are assembled into systems. Particularly for large-scale nonlinear systems this is an important feature in aiding the formulation of state equations. Illustrations of the bond graph data base approach are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call