Abstract

This paper proposes a new method for fault detection and isolation of a large-scale system by the bond graph (BG) model and the principal component analysis (PCA) technique in a decentralized architecture. The proposed method is entitled the BG-PCA technique. The main objective is to address the problem of monitoring large-scale system components by fault detection and isolation (FDI) methods. In the modeling framework, the BG model is presented by exploiting its structural and causal properties and the diagnostic bond graph (DBG). In measurement noise and perturbation conditions, the probability density function takes place to generate a clear decision procedure to detect the operating mode. In our approach, we firstly generate the structured residues. Furthermore, with a decentralized architecture, we can locate in what subsystem a fault is first detected. Finally, for isolation, the generation of the structured residues method from PCA is exploited to ensure localization. To validate the suggested BG-PCA algorithm, simulations are computed on a three-tank system to show the efficiency of the proposed FDI method, and satisfactory results are found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.