Abstract

The axisymmetric flow of liquid in a rigidly bounded annular container of heightH, rotating with angular velocity Ω and subjected to a temperature difference ΔTbetween its vertical cylindrical perfectly conducting side walls, whose distance apart isL, is analysed in the boundary-layer approximation for small Ekman numberv/2ΩL2, withgαΔTHv/4Ω2L2K∼ 1. The heat transfer across the annulus is then convection-dominated, as is characteristic of the experimentally observed ‘upper symmetric regime’. The Prandtl numberv/kis assumed large, andHis restricted to be less than about 2L. The side wall boundary-layer equations are the same as in (non-rotating) convection in a rectangular cavity. The horizontal boundary layers are Ekman layers and the four boundary layers, together with certain spatialaveragesin the interior, are determined independently of the interior flow details. The determination of the latter comprises a ‘secondary’ problem in which viscosity and heat conduction are important throughout the interior; the meridional streamlines are not necessarily parallel to the isotherms. The secondary problem is discussed qualitatively but not solved. The theory agrees fairly well with an available numerical experiment in the upper symmetric regime, forv/k[bumpe ] 7, after finite-Ekmannumber effects such as finite boundary-layer thickness are allowed for heuris-tically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call