Abstract

Recent laboratory experiments with rotating stratified water in a cylinder have revealed many of the predictions of linearized, analytic theory. Earlier measurements of the velocity field generated in a cylinder by top heating compared well with theory. Large stratification clearly suppressed Ekman pumping so that the interior velocity field (primarily azimuthal) responded by satisfying no-slip top and bottom boundary conditions without the need for Ekman layers . This interior flow also occupied a boundary layer of greater thickness than the Ekman layer under some conditions. Theory and experiments have now been conducted for sidewall heating. As before, experiment and theory agree well over some parameter ranges. But for some parameters, the flow is unstable. The exact nature of the instability remains poorly understood. The size of one combination of both vertical and horizontal boundary layers is governed by the Rossby radius of deformation multiplied by the square root of the Prandtl number . Sidewall boundary layers and their scales will be reviewed with the present results in mind.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call