Abstract

While the problem governing Stokes flow about a single particle that is subject to an external force is ill posed in two dimensions (the ‘Stokes paradox’), the related problem of two mutually repellent particles is well posed. Motivated by self-assembly phenomena in thin viscous membranes, we consider this problem in the limit of remote particles. Such limits are typically handled in the literature using reflection techniques, which provide successive approximations to the mutual hydrodynamic interactions. Since their starting point is a single particle in an unbounded fluid domain, these techniques are futile in the present two-dimensional problem. We show how this apparent contradiction is resolved via use of singular perturbations. We obtain a two-term approximation for the velocity acquired by circular disks, considering both rigid and free particle surfaces. We also illustrate our perturbation scheme for elliptic disks, deriving a renormalised single-particle velocity. The utility of our asymptotic scheme is illustrated in the general problem of hydrodynamic interaction between a cluster of remote disks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.