Abstract

Rural power grids are essential for rural development, impacting the lives of farmers, the agricultural economy, and the overall efficiency of agricultural production. To ensure the reliable operation of these grids, finding ways to provide high-quality power is imperative. In recent years, the penetration rate of distributed photovoltaic (PV) in the distribution network has been increasing. When the output of PV and load are not matched, the voltage fluctuation of the network affects the safe and stable operation of the distribution network. In this study, we propose that the stable operation of rural power grids can be achieved by employing a photovoltaic-electric spring (PV-ES) device. A state space model of PV-ES is established and a single PV-ES voltage control method, based on a PI controller, is proposed, taking a rural user household with a monthly power consumption of about 120 access to distributed power supply as an example. We analyzed the device’s effectiveness in addressing voltage fluctuation issues as well as how light intensity impacts its effectiveness. The implementation of the PV-ES device solves the most significant problem faced by rural power grids, namely, the unstable power supply that occurs during peak electricity consumption periods. In addition, the PV-ES device ensures a high-quality electricity consumption experience for consumers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call