Abstract

The high rate of microbes and their biological activity in the patient's mouth is a concern in the domains of dental caries and periodontal disease. The study aimed to shed light on the relationship between graphene oxide's nanoparticles (nGOs) antimicrobial properties and the growth of dental pathogenic bacteria. The forty swab samples were frequently collected from the patient's cavity mouth between November 2019 and January 2020, from patients who visited dentist clinics in Baghdad by taking swabs from mouth cavities with various dental caries with two age groups (5-17) and (18-60) from male and female to streaking them on Brain-Heart Infusion (BHI) agar, then identified by re-streaking on Mitis Salivarius Bacitracin (MSB) agar. All isolates were confirmed as Streptococcus mutans after API 20 Strep method. As well as the Colony Forming Units (CFU) were then determined after diluting the bacterial cell suspensions to obtain cell samples containing 1.5 × 108CFU/ ml. The collagen-binding adhesin (cnm) and glucosyltransferases (gtf) of S. mutans genes were identified using polymerase chain reaction (PCR) method before and after exposure to the nGOs, which were prepared in different pulse laser energy (500, 600, and 700mJ) with presence and absence of the magnetic field, and the data have been analyzing. After counting the CFU, the nGOs shows high effectiveness inhibiting the growth of S. mutans. This research provides definitive answers about the relationship between nGOs, antibacterial caries, and periodontal disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call