Abstract

Simple SummaryThe African swine fever (ASF) virus is one of the deadliest viruses plaguing the global swine industry. There are no effective treatments for pigs becoming infected with the ASF virus. Eliminating infected pigs is the only effective method to tackle an outbreak. Whole farm biosecurity is therefore critical to prevent the virus from entering in the first place. In recent years, feed and feed ingredients have been identified as potential vectors of viral diseases including ASF. The objective of this research was to simulate contamination of feed by ASF virus in a laboratory setting and use this simulation to test the efficacy of some select feed additives for reducing the amount and viability of this virus in feed. The main result shows that the inoculated virus in feed disappeared in a shorter time when the feed had been treated with the compounds. We conclude that these feed additives could be adopted as part of a comprehensive biosecurity system for pig holdings. Pigs might be protected from feed possibly contaminated by this virus, and the pork supply will thus be less likely to be impacted by this viral disease.African swine fever virus is one of the most highly contagious and lethal viruses for the global swine industry. Strengthening biosecurity is the only effective measure for preventing the spread of this viral disease. The virus can be transmitted through contaminated feedstuffs and, therefore, research has been conducted to explore corresponding mitigating measures. The purpose of the current study was to test a combination of pure benzoic acid and a blend of nature identical flavorings for their ability to reduce African swine fever viral survival in feed. This virus was inoculated to feed with or without the supplementation of the test compounds, and the viral presence and load were measured by a hemadsorption test and quantitative real time polymerase chain reaction. The main finding was that the combination of pure benzoic acid and nature identical flavorings could expedite the reduction in both viral load and survival in a swine feed. Therefore, this solution could be adopted as a preventive measure for mitigating the risk of contaminated feed by African swine fever virus.

Highlights

  • African swine fever (ASF) is a highly contagious and usually fatal disease for both domestic and feral pigs

  • Pure benzoic acid and the nature identical flavorings were mixed at the ratio of 10:0.4 by weight which was established by referring to the effective levels of 5 g/kg of pure benzoic acid and 0.2 g/kg of the nature identical flavorings when used separately in feed for pigs [21]

  • The survival rate of cells in the presence of 100- and 1000-fold dilutions of the supernatant of feed treated with pure benzoic acid or pure benzoic acid combined with nature identical flavorings reached 100% and thereby, 100-fold dilution was used in downstream hemadsorption tests to ensure no toxic effects on the porcine alveolar macrophage cells (Table 2)

Read more

Summary

Introduction

African swine fever (ASF) is a highly contagious and usually fatal disease for both domestic and feral pigs. This disease has been endemic for decades, initially in sub-Saharan. In 2018, China, a country holding half of the global population of pigs, reported its first outbreak of ASF, and it quickly spread to some other Asia-Pacific countries. According to the recent update by the World Organization for Animal Health (OIE) [1], approximately 7 million pigs were lost based on notified outbreaks in Asia and the Pacific since 2018. Trade embargos for pork are frequently imposed when this virus is found to be present, as exemplified by the recent Asian market ban on German pork imports after their first confirmed case of ASF in 2020. It is of paramount importance to safeguard the ASF-free countries against entry of the virus

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call