Abstract

Prenatal maternal feeding plays an important role in fetal development and has the potential to induce long-lasting epigenetic modifications. MicroRNAs (miRNAs) are non-coding, single-stranded RNAs that serve as one epigenetic mechanism. Though miRNAs have crucial roles in fetal programming, growth, and development, there is limited data regarding the maternal diet and miRNA expression in sheep. Therefore, we analyzed high and low maternal dietary protein for miRNA expression in fetal longissimus dorsi. Pregnant ewes were fed an isoenergetic high-protein (HP, 160-270 g/day), low-protein (LP, 73-112 g/day), or standard-protein diet (SP, 119-198 g/day) during pregnancy. miRNA expression profiles were evaluated using the Affymetrix GeneChip miRNA 4.0 Array. Twelve up-regulated, differentially expressed miRNAs (DE miRNAs) were identified which are targeting 65 genes. The oar-3957-5p miRNA was highly up-regulated in the LP and SP compared to the HP. Previous transcriptome analysis identified that integrin and non-receptor protein tyrosine phosphatase genes targeted by miRNAs were detected in the current experiment. A total of 28 GO terms and 10 pathway-based gene sets were significantly (padj < 0.05) enriched in the target genes. Most genes targeted by the identified miRNAs are involved in immune and muscle disease pathways. Our study demonstrated that dietary protein intake during pregnancy affected fetal skeletal muscle epigenetics via miRNA expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.