Abstract

Prostate volume is an important parameter to guide management of patients with benign prostatic hyperplasia (BPH) and to deliver clinical trial endpoints. Generally, simple 2D ultrasound (US) approaches are favoured despite the potential for greater accuracy afforded by magnetic resonance imaging (MRI) or complex US procedures. In this study, different approaches to estimate prostate size are evaluated with a simulation to select multiple organ cross-sections and diameters from 22 MRI-defined prostate shapes. A quasi-Monte Carlo (qMC) approach is used to simulate multiple probe positions and angles within prescribed limits resulting in a range of dimensions. The basic ellipsoid calculation which uses two scanning planes compares well to the MRI volume across the range of prostate shapes and sizes (R=0.992). However, using an appropriate linear regression model, accurate volume estimates can be made using prostate diameters calculated from a single scanning plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call