Abstract

Herein, we examined whether prolonged arsenic exposure altered tau phosphorylation in the brain of Sprague Dawley rats expressing endogenous wild-type tau. The results showed that daily intraperitoneal injections of 2.5 mg/kg BW sodium arsenite over 28 days caused arsenic accumulation in the rat brain. Interestingly, we found an increase in tau phosphorylation at the Tau 1 region (189−207) and S202 in the hippocampus, S404 in the cerebral cortex, and S396 and S404 in the cerebellum of arsenic-treated rats. Additionally, arsenic increased active ERK1/2 phosphorylation at T202/Y204 in the hippocampus, cerebral cortex, and cerebellum. Meanwhile, we detected increasing active JNK phosphorylation at T183/Y185 in the hippocampus and cerebellum. Moreover, p35, a neuron-specific activator of CDK5, was also elevated in the cerebellum of arsenic-treated rats, suggesting that CDK5 activity may be increased by arsenic. These results suggested that arsenic may induce tau phosphorylation through the activation of tau kinases, ERK1/2, JNK, and CDK5. Together, the findings from this study demonstrated that prolonged arsenic exposure is implicated in neurodegeneration by promoting tau phosphorylation in the rat brain and points toward a possible prevention strategy against neurodegeneration induced by environmental arsenic exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.