Abstract

ABSTRACT On 18 May 2024, a superbolide traversed the western part of the Iberian Peninsula, culminating its flight over the Atlantic Ocean and generating significant media attention. This event was caused by a weak carbonaceous meteoroid of 1 m, entering the atmosphere at 40.4 km s$^{-1}$ with an average slope of 8.5$^\circ$. The luminous phase started at 133 km and ended at an altitude of 54 km. The meteoroid’s heliocentric orbit had an inclination of 16.4$^\circ$, a high eccentricity of 0.952, a semimajor axis of 2.4 au, and a short perihelion distance of 0.12 au. The superbolide was recorded by multiple ground-based stations of the Spanish Fireball and Meteorite Network and the European Space Agency, as well as by the U.S. Government sensors from space. Due to the absence of observable deceleration, we successfully reconciled satellite radiometric data with a purely dynamic atmospheric flight model, constraining the meteoroid’s mass and coherently fitting its velocity profile. Our analysis shows a good agreement with the radiant and velocity data reported by the Center for Near-Earth Object Studies, with a deviation of 0.56$^\circ$ and 0.1 km s$^{-1}$, respectively. The presence of detached fragments in the lower part of the luminous trajectory suggests that the meteoroid was a polymict carbonaceous chondrite, containing higher-strength macroscopic particles in its interior due to collisional gardening, or a thermally processed C-type asteroid. The orbital elements indicate that the most likely source is the Jupiter-Family Comet region, aligning with the Solar and Heliospheric Observatory comet family, as its sunskirting orbit is decoupled from Jupiter. This event provides important information to characterize the disruption mechanism of near-Sun objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.