Abstract

There are severe limitations that photoconductive (PC) terahertz (THz) antennas experience due to Joule heating and ohmic losses, which cause premature device breakdown through thermal runaway. In response, this work introduces PC THz antennas utilizing textured InP semiconductors. These textured InP semiconductors exhibit high surface recombination properties and have shortened carrier lifetimes which limit residual photocurrents in the picoseconds following THz pulse emission—ultimately reducing Joule heating and ohmic losses. Fine- and coarse-textured InP semiconductors are studied and compared to a smooth-textured InP semiconductor, which provides a baseline. The surface area ratio (measuring roughness) of the smooth-, fine-, and coarse-textured InP semiconductors is resolved through a computational analysis of SEM images and found as 1.0 ± 0.1, 2.9 ± 0.4, and 4.3 ± 0.6, respectively. The carrier lifetimes of the smooth-, fine-, and coarse-textured InP semiconductors are found as respective values of 200 ± 6, 100 ± 10, and 20 ± 3 ps when measured with a pump-probe experimental system. The emitted THz electric fields and corresponding consumption of photocurrent are measured with a THz experimental setup. The temporal and spectral responses of PC THz antennas made with each of the textured InP semiconductors are found to be similar; however, the consumption of photocurrent (relating to Joule heating and ohmic losses) is greatly diminished for the semiconductors that are textured. The findings of this work can assist in engineering of small-scale PC THz antennas for high-power operation, where they are extremely vulnerable to premature device breakdown through thermal runaway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.