Abstract
AbstractMetallic polycrystalline thin films are used in a plethora of applications, including especially metallic interconnects for the microelectronics industry. Despite the numerous approaches at modeling and simulating processing of these films, there have not been any simulation tools, which can accurately predict texture and microstructure evolution in these films. We have developed a novel 2D model called FACET for the simulation of polycrystalline thin film growth at realistic spatial and time scales. The basic idea is to use the results of smaller-scale atomic simulations (density functional theory, molecular dynamics, and lattice Monte Carlo) to provide input and guidance on the evolution of grain structure and texture on a micron scale. The feature scale model is based on describing grains in terms of two-dimensional faceted surfaces and grain boundaries. The model includes the major phenomena involved in film growth, including deposition, nucleation, surface diffusion (on the substrate and on the growing film), inter-facet diffusion, and grain growth and coarsening. In addition, the texture of each grain is treated individually, so that the texture evolution of the system can be simulated. Predictions of the FACET code are compared with previous experimental studies of texture and microstructure in Silver films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.