Abstract

A phase diagram reflecting the main features of the typical phase diagram of cuprate superconductors has been studied within the framework of the Ginzburg-Landau phenomenology in the vicinity of a tetracritical point, which appears as a result of the competition of the superconducting and insulating pairing channels. The superconducting pairing under repulsive interaction corresponds to a two-component order parameter, whose relative phase is related to the orbital antiferromagnetic insulating ordering. Under weak doping, the insulating order coexists with the superconductivity at temperatures below the superconducting phase transition temperature and is manifested as a weak pseudogap above this temperature. A part of the pseudogap region adjacent to the superconducting state corresponds to developed fluctuations of the order parameter in the form of quasi-stationary states of noncoherent superconducting pairs and can be interpreted as a strong pseudogap. As the doping level is increased, the system exhibits a phase transition from the region of coexistence of the superconductivity and the orbital antiferromagnetism to the usual superconducting state. In this state, a region of developed fluctuations of the order parameter in the form of quasi-stationary states of uncorrelated orbital circular currents exists near the phase transition line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call