Abstract

ITER Test Blanket Modules (TBMs) will allow testing Breeding Blanket concepts for a future application in DEMO. IRFM (Institut de Recherche sur la Fusion Magnetique) contribution to this test program consists in the integration of the 2 European TBMs (Helium Cooled Lithium Lead and Helium Cooled Pebble Bed) in a dedicated equatorial port. The two Breeding Blanket concepts use Helium gas as a coolant, liquid PbLi as breeder (for HCLL process) and Helium gas for Tritium extraction (for HCPB process). These materials are passing through the cryostat interspace forming a pipe network called the Pipe Forest. The main structural function of the Pipe Forest is to absorb the thermal expansion due to the Vacuum Vessel and due to the pipe system itself. The Pipe Forest has to cope with several design issues. In this study, the different key parameters of the Pipe Forest design are identified and their relative influence is analysed. Several design options were investigated and compared based on: - Thermo-mechanical finite element calculations - Pipe Forest integration within the cryostat interspace - Interface management - Assembly and maintenance scenarios - Complex pipe routing due to the expansion bends - RCC-MR 2007 requirements The chosen thermal compensation solution (thermal expansion loops) led to a Pipe Forest design. The CAE analysis of this Pipe Forest showed that it fulfills the requirements of the RCC-MR 2007, which is the reference design and construction code selected for the European TBM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.