Abstract

In support of the breeder blanket development program, the EU is conducting a dedicated neutronics R&D effort to provide the basis for the design of nuclear tests to be performed in ITER on the Test Blanket Modules (TBMs). It includes the development of computational tools comprising both Monte-Carlo and deterministic transport, sensitivity and uncertainty codes, the generation of high quality neutron cross-section and covariance data libraries. These are validated experimentally in view of their application in the ITER TBM and the DEMO design. To this purpose, two neutronics experiments have been carried out on mock-ups of both the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) variants of ITER TBMs, at 14-MeV neutron sources. Redundant experimental techniques have been used to measure the resulting tritium production rate and the neutron and gamma ray spectra which are needed to predict the blanket shielding performance, nuclear power production and all nuclear loads. The comparison of experiment and corresponding calculation is obtained with the associated uncertainty margin based on experimental as well as calculational uncertainties. At the same time, suitable nuclear measuring techniques for TBMs in ITER, in particular for the tritium production, are being developed, optimised, and tested in the mock-up experiments. In particular, the present paper summarizes the preliminary results of the latest of such experiments, i.e. the one conducted on a mock-up of the HCLL blanket. It describes also the dedicated neutronics R&D activities, including the efforts to specify the neutronics tests and objectives in TBMs in ITER, considering the various design concepts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call