Abstract

The viability of the tokamak as a potential fusion reactor depends on the ability to keep the plasma in a stable regime while achieving temperatures, densities, and confinement times that are as high as possible. Tokamak scenario development attempts to find plasma regimes that achieve all of these conditions and are accessible with a given set of hardware constraints. This requires the ability to control plasma properties such as the normalized beta, the internal inductance, safety factor, rotation, etc. One property that has received less attention than some of the others, but is no less critical to achieving high performance, is the electron temperature (Te) profile. In this work, Linear Quadratic Integral (LQI) control is used to develop a controller for the electron temperature profile in DIII-D. The controller is based on a linearized model derived from the transport equation that describes the evolution of the electron temperature, and includes contributions from the neural network surrogate models NubeamNet and MMMnet. The controller is tested in simulation using COTSIM, and is proven capable of tracking a target Te profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call