Abstract

In this paper, a cascaded configuration for two-layer frequency selective surfaces (FSSs) at terahertz (THz) frequencies with improved filtering characteristics is realized for electrically thick substrates. At THz frequencies, the thicknesses of commercially available substrates are comparable to the free-space wavelength. As a result, the substrate plays a critical role in determining the transmission characteristics of THz multilayer FSS structures. Proper coupling method between FSS structures should be chosen to avoid unwanted substrate resonances or Fabry-Perot resonances, which otherwise degrade the transmission characteristics of the cascaded FSS structure. In this paper, a cascaded structure to avoid multiple reflections within the substrate is presented and the same is used to realize two double-layered FSS structures to improve the transmission response. The transmission response is improved by introducing an extra transmission zero at a frequency location lower than the resonant frequency, thereby achieving high roll-off rate for the lower side of the stop band, and to suppress unwanted resonances, thereby increasing the rejection bandwidth of the filter. The proposed cascaded FSS structures were fabricated and tested using THz time-domain spectroscopy. Good agreement between simulations and experiments were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.