Abstract

In this paper, we present a design technique to realize reconfigurable terahertz (THz) frequency selective surface (FSS) polarizer. Our approach relies on combining vanadium dioxide (VO2) patches with metallic resonators. Vanadium dioxide behaves as an insulator at room temperatures and as a metal at high temperatures with a characteristic insulator–metal transition temperature of ~68 °C. We used this attribute to realize a reconfigurable single- to dual-polarized bandpass FSS structure at 0.5 THz. Along with the simulation results, FSS structures fabricated on sapphire substrates were measured using THz time-domain spectroscopy. Measured extinction ratio of ~25 dB was achieved for the THz polarizer with just a single FSS layer. Good agreement between simulation and experiments were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.