Abstract

Terahertz (THz) electroluminescence was produced by three different types of sources: intersubband transitions in silicon germanium quantum wells, resonant state transitions in boron-doped strained silicon germanium layers, and hydrogenic transitions from dopant atoms in silicon. The devices were grown by molecular beam epitaxy, fabricated by dry etching, and characterized by infrared spectroscopy. The absorption of THz was observed in silicon germanium quantum wells at energies corresponding to heavy hole and light hole intersubband transitions. These results suggest that SiGe nanotechnology is attractive for THz device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.