Abstract

During the past few years, vigorous studies have begun on semiconductor devices that generate and detect frequencies from 0.3 - 10 TeraHertz (1000 30 /spl mu/m). Previous THz sources were based on electrical methods using transistor oscillators (to 0.5 THz), diode frequency multipliers (to 2.5 THz), and femtosecond optical pulse switches. Infrared emitters such as the Quantum Cascade Laser in the III-V semiconductors have been difficult to extend to THz frequencies due to reststrahlen absorption by polar phonons. In contrast, Si has lower absorption and devices may be able to operate over a broader THz range than the III-V semiconductors. This report describes the fabrication and characterization of THz sources based on three different design approaches: intersubband transitions in Silicon Germanium quantum wells, resonant state transitions in boron-doped strained SiGe quantum wells, and dopant impurity transitions in doped Si layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.