Abstract
Image enhancement, including image de-noising, super-resolution, registration, reconstruction, in-painting, and so on, is an important issue in different research areas. Different methods which have been exploited for image analysis were mostly based on matrix or low order analysis. However, recent researches show the superior power of tensor-based methods for image enhancement. In this article, a new method for image super-resolution using Tensor Ring decomposition has been proposed. The proposed image super-resolution technique has been derived for the super-resolution of low resolution and noisy images. The new approach is based on a modification and extension of previous tensor-based approaches used for super-resolution of datasets. In this method, a weighted combination of the original and the resulting image of the previous stage has been computed and used to provide a new input to the algorithm. This enables the method to do the super-resolution and de-noising simultaneously. Simulation results show the effectiveness of the proposed approach, especially in highly noisy situations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have