Abstract

We show that if V is a vertex operator algebra such that all the irreducible ordinary V-modules are $$C_1$$ -cofinite and all the grading-restricted generalized Verma modules for V are of finite length, then the category of finite length generalized V-modules has a braided tensor category structure. By applying the general theorem to the simple affine vertex operator algebra (resp. superalgebra) associated to a finite simple Lie algebra (resp. Lie superalgebra) $$\mathfrak {g}$$ at level k and the category $$KL_k(\mathfrak {g})$$ of its finite length generalized modules, we discover several families of $$KL_k(\mathfrak {g})$$ at non-admissible levels k, having braided tensor category structures. In particular, $$KL_k(\mathfrak {g})$$ has a braided tensor category structure if the category of ordinary modules is semisimple or more generally if the category of ordinary modules is of finite length. We also prove the rigidity and determine the fusion rules of some categories $$KL_k(\mathfrak {g})$$ , including the category $$KL_{-1}(\mathfrak {sl}_n)$$ . Using these results, we construct a rigid tensor category structure on a full subcategory of $$KL_1(\mathfrak {sl}(n|m))$$ consisting of objects with semisimple Cartan subalgebra actions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call