Abstract

In this paper the W-algebra W(2, 2) and its representation theory are studied. It is proved that a simple vertex operator algebra generated by two weight 2 vectors is either a vertex operator algebra associated to an irreducible highest weight W(2, 2)- module or a tensor product of two simple Virasoro vertex operator algebras. Furthermore, we show that any rational, C 2-cofinite and simple vertex operator algebra whose weight 1 subspace is zero, weight 2 subspace is 2-dimensional and with central charge c = 1 is isomorphic to $${L(\frac{1}{2},0)\otimes L(\frac{1}{2},0)}$$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.