Abstract

The tension-compression fatigue behaviour of a silicon carbide fibre-reinforced glass ceramic matrix composite, SiC/1723, with a circular hole was investigated at room temperature. Two laminate lay-ups were studied: cross-ply, [0/90] 2s, and unidirectional, [0] 8. At first, the fatigue limit based on one million cycles was established for the tension-tension fatigue condition. Then, the fatigue response under fully reversed (tension-compression) cycling loading with a maximum stress equal to the tension-tension fatigue limit was investigated. This tension-compression loading resulted in an increased amount of damage and ultimately led to the specimen failure well before one million cycles. In the cross-ply laminate, the damage mechanisms in the 90° plies involved transverse cracks only during tension-tension cycling, and transverse and longitudinal cracks during tension-compression cycling. In the unidirectional laminate, the longitudinal cracks which initiated at the hole periphery grew longer in tension-compression fatigue than in tension-tension fatigue. On the other hand, no damage and consequently no effect on fatigue life was observed during the compression-compression fatigue condition only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.