Abstract
Experiments were undertaken to determine the contribution of passive tension to total tension during rapid shortening in a stimulated muscle fiber. Results were obtained by applying shortening movements at constant velocities slightly less than Vu (the velocity of unloaded shortening) to intact twitch fibers isolated from the frog (Rana temporaria). The tension maintained by unstimulated fibers during such shortening movements ("dynamic passive tension") from moderately long lengths was greater than zero but much less than the passive tension measured under static conditions ("static passive tension") at the same lengths. Fibers maximally activated by electrical stimulation and then shortened at the same velocity over the same range of average sarcomere lengths maintained tension that was greater than zero but less than the dynamic passive tension. For average sarcomere lengths up to approximately 3.1 microns, the dynamic passive tension appeared to be substantially abolished by activation. The onset of the apparent disappearance of dynamic passive tension was studied by initiating the stimulation and the shortening movement simultaneously. The resulting tension response exhibited a latency relaxation that was increased in amplitude compared with the isometric case, followed by a brief tension rise, giving way to a steady tension level equal to that expected if stimulation had been initiated well before the release. These changes are qualitatively explained in terms of the establishment of a steady state distribution of deformations of attached cross-bridges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.