Abstract

T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions that result in T cell activation are complex and have been distinguished by their equilibrium affinity and kinetic profiles. While prior affinity-based models can successfully predict meaningful TCR-pMHC interactions in many cases, they occasionally fail at identifying TCR-pMHC interactions with low binding affinity. This study analyzes TCR-pMHC systems for which empirical kinetic and affinity data exist and prior affinity-based predictions fail. We identify a criteria for TCR-pMHC systems with available kinetic information where the introduction of a correction factor improves energy-based model predictions. This kinetic correction factor offers a means to refine existing models with additional data and offers molecular insights to help reconcile previously conflicting reports concerning the influence of TCR-pMHC binding kinetics and affinity on T cell activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.