Abstract

Tensile strained epitaxial Ge films were grown on Si(100) substrates by ultra-high vacuum chemical vapor deposition. The tensile strain was induced by the thermal expansion coefficient mismatch between Si and Ge during the cooling process from elevated growth temperatures, which induces narrowing of the Ge direct band gap, EgΓ, and pushes the absorption spectrum of Ge toward longer wavelengths. The EgΓ versus strain relation was measured experimentally by photoreflectance and x-ray diffraction, and the result agrees well with calculations by deformation potential theory. With an in-plane tensile strain of 0.21%, the EgΓ of the Ge film grown at 800 °C decreased from 32 meV to 0.768 eV compared with 0.80 for bulk Ge, and corresponded to an absorption edge at 1610 nm. The broadened absorption spectrum of tensile strained Ge makes it promising as a Si-compatible photodector material for L-band (1560–1620 nm) optical communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call