Abstract
Elite tennis players demonstrate an outstanding ability to predict the timing of their shots during matches, especially during prolonged rallies. Exploring the characteristics of this temporal perception advantage and its cognitive processing mechanisms may help explain the influence of sports experience on temporal perception abilities. We recruited 28 tennis athletes and 28 controls with no sports experience and measured their behavioral performance and brain neural activity characteristics using a time-to-contact paradigm under different temporal and temporal context conditions. The results indicated that in the time estimation task, tennis athletes had significantly smaller absolute bias and lower delayed response ratios than non-athlete controls. Performance of both groups in the timing task without a beat context was significantly better than that with a rhythmic context. During the timing process, the amplitude of the contingent negative variation (CNV) was most closely associated with the processing of temporal information, where tennis athletes was significantly greater than that of non-athletes. The CNV amplitude induced in the left brain area was significantly smaller than that in the midline brain area and the right brain area. Overall, we found that tennis players showed a distinct advantage in timing accuracy, characterized by earlier prediction preparation and higher utilization of temporal information.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have