Abstract

A stabilization procedure for curing temporal instability of node-based smoothed finite element method (NS-FEM) is proposed for dynamic problems using linear triangular element. A stabilization term is added into the smoothed potential energy functional of the original NS-FEM, consisting of squared-residual of equilibrium equation. A gradient smoothing operation on second order derivatives is applied to relax the requirement of shape function, so that the squared-residual can be evaluated using linear elements. Numerical examples demonstrate that stabilization parameter can “tune” NS-FEM from being “overly soft” to “overly stiff”, so that eigenvalue solutions can be stabilized. Numerical tests provide an empirical value range of stabilization parameter, within which the stabilized NS-FEM can still produce upper bound solutions in strain energy to the exact solution of force-driven elastostatics problems, as well as lower bound natural frequencies for free vibration problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call