Abstract
In this paper, a stable node-based smoothed finite element method (SNS-FEM) is presented for analyzing metal forming problems using linear triangular or tetrahedral elements. In present method, the numerical integration domains are approximately circular or spherical regions of the node-based smoothing domains generated by the node-based smoothed finite element method (NS-FEM). Four or six supplementary integration points, which are symmetrically located at the crossover points of the region and the coordinate axis, are employed for each node to form the stabilization items associated with the variance of smoothed shape function gradient. Through this operation without the introducing of any uncertain parameter, the SNS-FEM not only significantly cures the temporal instability of NS-FEM but also performs better in effectiveness and efficiency than FEM, which is well validated by several numerical examples containing benchmark cases. Additionally, a simple but effective contact algorithm including contact searching and contact force computation is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.