Abstract

A stable nodal integration method with strain gradient (SNIM-SG) for curing the temporal instability of node-based smoothed finite element method (NS-FEM) is proposed for dynamic problems using linear triangular and tetrahedron element. In each smoothing domain, except for considering the smoothed strain into the calculation of potential energy functional as NS-FEM, a term related to strain gradient is taken into account as a stabilization term. The proposed SNIM-SG can achieve appropriate system stiffness in strain energy between FEM and NS-FEM solutions and obtains quite favorable results in elastic and dynamic analysis. The accuracy and stability of SNIM-SG solution are studied through detailed analyzes of benchmark cases and practical engineering problems. In elastic-static analysis, it is found that SNIM-SG can provide higher accuracy in displacement field than the reference approaches do. In free vibration analysis, the spurious non-zero energy modes can be eliminated effectively owing to the fact that SNIM-SG solution strengths the original relatively soft NS-FEM, and SNIM-SG is confirmed to obtain fairly accurate natural frequency values in various examples. All in all, SNIM-SG cures the flaws of NS-FEM and enhances the dominant of nodal integration. Thus, the efficacy of the presented formulation in solving solid mechanics problems is well represented and clarified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call