Abstract

Integer and fractional temporal self-imaging phenomena occur when an ideal (infinite-duration) periodic optical pulse sequence propagates through a suitable dispersive medium under the first-order dispersion approximation. I analytically and numerically investigate the impact of nonidealities in the input periodic pulse sequence, especially finite duration of the sequences as well as intensity and phase fluctuations between pulses, on the temporal self-imaging phenomena. I derive conditions for which effects associated with these nonidealities can be neglected. Under these conditions, the intensity of the input nonideal finite sequence can also be self-imaged—integer and fractional self-imaging are also possible—by propagation through a suitable dispersive medium. The resulting self-images of the input signal not only maintain the temporal features of the original individual pulses (temporal shape and duration) but also the total temporal duration of the finite input sequence and the original intensity fluctuations between pulses. The analytical results are confirmed by means of numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.