Abstract

Part of the information obtained by rodent whiskers is carried by the frequency of their movement. In the thalamus of anesthetized rats, the whisker frequency is represented by two different coding schemes: by amplitude and spike count (i.e., response amplitudes and spike counts decrease as a function of frequency) in the lemniscal thalamus and by latency and spike count (latencies increase and spike counts decrease as a function of frequency) in the paralemniscal thalamus (see accompanying paper). Here we investigated neuronal representations of the whisker frequency in the primary somatosensory ("barrel") cortex of the anesthetized rat, which receives its input from both the lemniscal and paralemniscal thalamic nuclei. Single and multi-units were recorded from layers 2/3, 4 (barrels only), 5a, and 5b during vibrissal stimulation. Typically, the input frequency was represented by amplitude and spike count in the barrels of layer 4 and in layer 5b (the "lemniscal layers") and by latency and spike count in layer 5a (the "paralemniscal layer"). Neurons of layer 2/3 displayed a mixture of the two coding schemes. When the pulse width of the stimulus was reduced from 50 to 20 ms, the latency coding in layers 5a and 2/3 was dramatically reduced, while the spike-count coding was not affected; in contrast, in layers 4 and 5b, the latencies remained constant, but the spike counts were reduced with 20-ms stimuli. The same effects were found in the paralemniscal and lemniscal thalamic nuclei, respectively (see accompanying paper). These results are consistent with the idea that thalamocortical loops of different pathways, although terminating within the same cortical columns, perform different computations in parallel. Furthermore, the mixture of coding schemes in layer 2/3 might reflect an integration of lemniscal and paralemniscal outputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.